Шаговые электроприводы НПФ Электропривод — Силовая электроника

Шаговые электроприводы НПФ Электропривод — Силовая электроника

Сергей Сергеев

В настоящее время хорошей альтернативой микроприводам, состоящим из быстроходного двигателя с обратной связью и механического редуктора, является шаговый электропривод, ставший уже традиционным исполнительным устройством многих электронных приборов и систем.

Шаговый двигатель — это синхронная электрическая машина, преобразующая электрическую энергию в угловое или линейное перемещение ротора с возможностью его остановки в некоторых фиксированных положениях с сохранением стабилизирующего момента. Принцип действия всех существующих шаговых двигателей основан на дискретном изменении состояния электромагнитного поля в рабочем зазоре электрической машины.

При проектировании электромеханических систем часто приходится делать выбор между шаговым электроприводом и сервоприводом.

Сервопривод состоит из контроллера, драйвера, двигателя постоянного тока или синхронного двигателя и датчика обратной связи. Контроллер сервопривода обрабатывает сигналы датчика. Крутящий момент обеспечивается регулировкой питающего тока.

Шаговый электропривод состоит только из контроллера, драйвера и шагового двигателя. Сведений о положении ротора контроллер не имеет, но оно с большой долей вероятности предсказуемо, поэтому датчик обратной связи не используется.

Достоинства шагового электропривод:

  • максимальный крутящий момент на низких скоростях;
  • высокая точность позиционирования;
  • простая схема управления;
  • низкая стоимость.
  • высокие динамические характеристики;
  • плавность движения.

Недостатки шагового электропривод:

  • потеря крутящего момента на высоких скоростях;
  • резонанс шагового двигателя;
  • возможна потеря контроля над положением ротора ввиду отсутствия обратной связи.
  • колебательные процессы в контуре обратной связи;
  • сложная схема управления.

Современные системы управления шаговыми электроприводом обычно имеют отделенные друг от друга контроллер (рис. 1) и драйвер (рис. 2). Связано это с тем, что у правильно спроектированного драйвера довольно сложный алгоритм дробления шага, позволяющий уменьшить величину минимального перемещения и избежать резонансных явлений. Такое разделение позволяет легко использовать для управления шаговыми электроприводом как специализированные контроллеры, сделанные под узкий спектр задач, так и LPT-порт персонального компьютера. Драйвер шагового двигателя для пользователя является универсальным устройством, на вход которого подается лишь силовое питание для двигателя и стандартные сигналы «направление» и «шаг». На драйвере выставляются только величина тока в фазах двигателя и коэффициент дробления шага.

Использование в качестве контроллера шаговых двигателей персонального компьютера получило широкое распространение в малых токарных и фрезерных станках как вариант замены промышленной стройки ЧПУ. Современное программное обеспечение позволяет контур или трехмерную модель, сделанную, например, в AutoCAD, сразу выводить как на принтер, так и на станок с ЧПУ.

Специализированные контроллеры шаговых электроприводов, такие как трехканальный контроллер SMC-3, выпускаемый НПФ Электропривод, предназначены в основном для задач автоматизации технологических процессов. Каждый из каналов контроллера SMC-3 выполнен на микроконтроллере ATMega8 и работает по исполнительной программе, содержащейся в энергонезависимой памяти микроконтроллера. Исполнительная программа записывается с помощью ПК через интерфейс RS-232. Все три канала подключены к одному порту RS-232 и «слушают» шину одновременно. Обмен устройства с ПК осуществляется по принципу «команда — ответ». Ответ содержит параметр, сообщающий ПК об успешном или неуспешном выполнении команды с указанием номера ошибки. Ответ приходит от того контроллера, который распознал свой номер, содержащийся в управляющей команде. Если команда ошибочна и не распознана ни одним из микроконтроллеров, все каналы находятся в дежурном режиме, ответ (сообщение об ошибке команды) приходит от контроллера № 1. Выполнение исполнительной программы контроллером заключается в чтении очередной команды из энергонезависимой памяти и в выдаче соответствующих команд управляющих сигналов на драйвер ШД. Одновременно осуществляется анализ сигналов от выключателей реверса и аварийных концевых выключателей. Перечень команд охватывает все возможные варианты работы шагового двигателя — работа в статическом режиме, движение с постоянной скоростью, движение с ускорением, изменение направления движения, переключение величины дробления шага, синхронизация шаговых двигателей соседних каналов. Контроллер SMC-3 не позволяет в полной мере поддерживать графические интерфейсы ПК, однако ориентированная на неподготовленного пользователя программа верхнего уровня обеспечивает интуитивно понятный доступ к полному набору команд контроллера. Раздельное исполнение контроллера SMC-3 и драйверов позволяет одинаково просто управлять шаговыми электроприводами в диапазоне мощностей 0,005–1,5 кВт.

Шаговый двигатель — компактное исполнительное устройство с большим крутящим моментом, составляющее конкуренцию сервоприводам во многих приложениях, в которых требуются низкая скорость и высокая точность позиционирования. Примеры использования шаговых электроприводов — станки с ЧПУ, намоточное оборудование, механизмы протяжки проволоки, фольги, контрольно-сортировочные автоматы, сварочные роботы, этикетировщики.

Шаговый двигатель: особенности и принцип работы

Чтобы тот или иной электрический прибор работал, ему требуется специальный приводной механизм. Одним из таких механизмов является шаговый двигатель. В данном материале вы узнаете, что он собой представляет, какой принцип его работы и на какие категории подразделяется.

Что представляет собой шаговый двигатель?

Шаговый двигатель может быть униполярным или биполярным. Он является электрическим и бесщеточным двигателем постоянно тока, способным делить полный оборот на несколько одинаковых шагов. В него входят такие детали:

Читайте также:  Isuzu giga – цены и характеристики, фотографии и обзоры

  • специальный контроллер для шагового привода;
  • магнитные части;
  • обмотки;
  • приборная панель (она же выступает в роли блока управления);
  • передатчики;
  • сигнализаторы.

Шаговый двигатель используется преимущественно для следующих целей:

  • работы фрезерного станка;
  • работы шлифовального станка;
  • обеспечивает работу разных бытовых приборов;
  • работы производственных механических средств;
  • обеспечивает работу транспорта.

Принцип работы привода

Принцип работы данного привода выглядит следующим образом. При приложении напряжении к клеммам, щетки на самом шаговом двигателе начинают постоянно двигаться. Движок холостого хода имеет при этом уникальное свойство: он преобразовывает входящие импульсы, имеющие преимущественно прямоугольную направленность, в заранее обозначенное положение приложенного ведущего вала.

Каждый из входящих импульсом способен переместить вал под определенным углом. Приборы, которые оснащены подобным редуктором, имеют максимальную эффективность при условии наличия нескольких зубчатых электромагнитов, которые находятся вокруг центрального железного куска, имеющего зубчатую форму. Внешняя цепь управления возбуждает электромагнит. При необходимости повернуть вал двигателя, тот электромагнит, к которому приложена энергия, притягивает к себе зубья колеса. Когда они выравниваются по отношению к электромагниту, они смещены по отношению к последующей магнитной части двигателя.

Первый электромагнит выключается, а затем включается второй, после чего начинает вращаться шестеренка, выравниваясь при этом с предыдущим колесом. Затем такое действие повторяется необходимое количество раз. Каждое из таких вращений называют постоянным шагом, при этом скорость вращения шагового двигателя можно вычислить при подсчете количества шагов, нужных для полного его оборота.

Чтобы контролировать работу шагового двигателя применяется специальный драйвер. Это необходимо в тех случаях, если вы настраиваете привод для работы станка или применяете его для запуска в работу ветрогенератора.

Типы шаговых двигателей

Шаговые двигатели подразделяются на такие типы:

  • с наличием постоянного магнита;
  • синхронный гибридный привод;
  • переменный двигатель.

Все они несколько отличаются друг от друга, в том числе и по принципам своей работы.

Так, например, приводы с постоянными магнитами оснащены специальной магнитной деталью в роторе. Такие двигатели работают по принципу притяжения либо отталкивания статором и ротором мотора на основе электромагнита.

Переменный двигатель имеет обычный железный ротор и работа его построена по принципу фундаментальности. Когда допускается минимальный уровень отталкивания с самым малым зазором, при этом точки ротора имеют притяжение к полюсам статора.

А вот гибридный привод может сочетать в себе оба принципа работы, он считается наиболее дорогой моделью шаговых двигателей.

Двухфазные шаговые двигатели

Двухфазный мотор очень прост, его можно установить человеку без специального опыта. Независимо от того, собрали ли вы его самостоятельно или приобрели в готовом виде, он имеет два типа обмотки для катушек:

  • униполярную;
  • биполярную.

Если шаговый двигатель имеет одну обмотку с центральным магнитным краном, влияющим на каждую фазу, то это униполярный привод. Каждую обмоточную секцию следует включить с целью обеспечения нужного направления магнитного поля. В данном приводе магнитный полюс способен функционировать без необходимости дополнительного переключения, поэтому направления тока и цепная коммутация делаются очень просто, при помощи одного транзистора на каждую обмотку. При этом учитываются переключения фазы:

  • три провода на фазу;
  • шесть на выходной сигнал.

Микроконтроллер двигателя привода можно применять с целью активизации транзистора в той или иной последовательности.

А обмотки можно также подключать при помощи прикосновения проводов соединения вместе с постоянными магнитами привода. При соединении катушечных клемм, повернуть вал будет затруднительно. Сопротивление между катушечным торцом и общим проводом равно половине сопротивления катушечных и проводных торцов. Это выглядит так, поскольку общий провод имеет большую длину, нежели половинная часть, используемая для соединения катушек.

Биполярные шаговые двигатели имеют одну фазовую обмотку, в которую ток поступает переломным способом с применением магнитного полюса. Управляющая система в данном случае будет сложной с использованием соединяющего моста. На фазу имеется в наличии два провода, но они не общие. При смешении сигнала шагового двигателя на высоких частотах, эффект трения системы может быть снижен.

Кроме того, еще одним типом шагового двигателя является трехфазный, но сфера его применения слишком узкая:

  • при работе фрезерных станков с ЧПУ;
  • на некоторых автомобилях, где применяется дроссельная заслонка;
  • на дисководе и принтерах некоторых марок.

Реактивные шаговые двигатели: особенности и принцип работы

Стоит отметить, что активные шаговые приводы имеют большой недостаток: это крупный шаг, достигающий нескольких десятков градусов. В отличие от них, реактивные шаговые двигатели способны редуцировать роторную частоту, благодаря чему шаг становится угловым менее градуса.

Главной особенностью реактивного привода является то, что зубцы размещены на статорных полюсах. Синхронизирующий момент в нем обеспечивается разницей магнитных сопротивлений по поперечной и продольной оси привода.

Реактивный шаговый двигатель имеет один ключевой недостаток: в нем отсутствует синхронизирующий момент, если обмотки статора обесточены.

Повысить степень редукции двигателя, причем независимо какого, активного или реактивного, можно при использовании многопакетных конструкций, когда зубцы статора сдвигаются друг на друга на часть деления, а ротора каждого пакета не сдвигаются и оси их полюсов одинаковые. Подобная конструкция очень сложная в плане создания и стоит в готовом виде недешево, также к ней потребуется сложный коммутатор.

На сегодняшний день в продаже можно отыскать огромное количество всевозможных конструкций двигателей, которые отличаются по таким параметрам, как:

  • количество фаз;
  • тип размещения обмотки;
  • способы фиксации ротора и т.д.

В индукторных шаговых двигателях момент вращения создается при взаимодействии магнитного поля, которое создается статорными обмотками и постоянного магнита, располагаемого в зубчатой части зазора.

Читайте также:  Как Часто Менять Свечи На Газу ~

Синхронизирующий момент в индукторном двигателе сам по себе реактивный, благодаря чему получается статорная обмотка, а постоянный магнит способен создавать момент фиксации, благодаря чему ротор удерживается в нужном положении при отсутствующем токе.

В отличие от реактивного шагового двигателя, индукторный, при аналогичном шаге, имеет больший синхронизирующий момент, а также более улучшенные технические характеристики.

Синхронные линейные шаговые двигатели

С целью автоматизации некоторых производственных процессов на предприятии, иногда возникает необходимость перемещения объектов в плоскости. Чтобы это сделать, потребуется использовать специальный преобразователь вращательного движения в поступательное, что достигается путем применения кинематики.

При помощи линейных шаговых двигателей можно преобразовать импульсную команду прямо в линейное перемещение, что значительно упростит кинематическую схему всевозможных электрических приводов.

Статор в данном приводе представлен в виде магнитомягкой плиты, а провода подмагничиваются путем работы постоянного магнита.

Зубцовые деления в статоре и подвижной части одинаковые, при этом они могут быть сдвинуты на половину деления в пределах одного провода ротора. Поток подмагничивания и его магнитное сопротивление, в данном случае, не зависят от того, где находится подвижная часть двигателя.

Чтобы переместить объект в плоскости согласно двум координатам, применяют двигатели двухкоординатного типа.

Также в линейных двигателях используется магнитно-воздушная подвеска. Благодаря силе магнитного притяжения ротор притягивается к статору. Далее под ротор сквозь форсунки нагнетают воздух в сжатом виде, вследствие чего появляется сила, отталкивающая ротор от статора. Так между ними возникает воздушная подушка и ротор висит над статором с наличием минимально зазора. Это и обеспечивает минимум сопротивления движения ротора и высокоточное позиционирование.

В каких режимах способен работать синхронный шаговый двигатель?

Привод способен работать устойчиво при условии отсутствия потерь шагов во время отработки угла при подаче на обмотки управления импульсных серий. При отработке каждого шага ротор имеет уверенное равновесие по отношению к вектору магнитной индукции, относящейся к магнитному полю статора.

Режим отработки каждого шага должен соответствовать количеству импульсов управления, которые подаются на обмотки привода, а он при этом, до момента прихода следующего импульса, должен отработать заданный ему угол вращения. В начале каждого из шагов угловая двигательная скорость должна быть нулевой.

Допускаются колебания углового приводного вала по отношению к установившемуся значению. Они обуславливаются наличием кинетической энергии, которая накапливается двигательным валом во время отработки угла. При этом энергия способная преобразовываться в потери:

  • магнитные;
  • механические;
  • электрические.

Чем больше их величина, тем быстрее кончается процесс перехода отработки одного шага приводом.

При запуске ротор может иметь отставание от статорного потока на шаг и даже больше, вследствие чего получается расхождение между количеством роторных шагов и статорным потоком.

Ключевые характеристики шагового двигателя – это:

  • шаг;
  • предельная механическая характеристика;
  • приемистость.

Предельная характеристика представляет собой зависимость максимально возможного синхронизирующего момента от частот управляющих импульсов.

А приемистостью называется частота этих импульсов, которая исключает возможность потерь или добавлений шага во время обработки. Приемистость считается ключевым показателем режима перехода в двигателе. Она способна расти вместе с синхронизирующим моментом, снижением шага, инерционным моментом линейно перемещаемых или вращаемых частиц, а также статического момента сопротивления.

Особенности подключения шагового двигателя

Подключить двигатель шагового типа можно по той или иной схеме, которая зависит от количества проводов и способов запуска.

Двигатели могут иметь от четырех до восьми проводов. Если их всего четыре, то применение двигателя возможно только с биполярным устройством. Каждая фазная обмотка, которых всего две, оснащена двумя проводами. Определять проводные пары следует с использованием метра, затем подключается драйвер пошаговым методом.

Мотор, оснащенный шестью проводами, включает в себя два провода для каждой обмотки и центральный кран, тоже для каждой из них. Его можно подключать и к однополярному, и к биполярному устройству. Для разделения привода следует применять специальный прибор для измерения. К однополярному устройству привод можно подключать с использованием всех шести проводов, а к однополярному будет достаточного одного конца и одного центрального крана от каждой обмотки.

Пятипроводной мотор практически не отличается от предыдущего, однако, его центральные клеммы изнутри соединены как один сплошной кабель и имеют один выход к одному из проводов. Не следует отделять обмотки друг от друга, иначе можно их разорвать. Вместо этого лучше определить центр провода и соединить его с другими проводниками, это будет максимально эффективное решение подключения. После этого можете подключать само устройство и проверять его на работоспособность.

Ключевые технические характеристики двигателей

Первичная обмотка при постоянном токе создает номинальное напряжение. А первоначальная скорость крутящего момента привода меняется вместе с током. От того, какова схема двигателя и от индуктивности его обмоток зависит время снижения линейного момента на более высоких скоростях. Некоторые марки двигателей, имеющие степень защиты IP65, способны работать в самых трудных условиях.

Если вы желаете выбрать готовую модель шагового двигателя отечественного производства, обратите внимание на основные технические характеристики наиболее известных моделей:

  • ШД-1 – градус шага равен 15, 4 фазы, крутящий момент составляет 40 Нт;
  • ДШ-0,04А – градус шага 22,5, 4 фазы, крутящий момент 100 Нт;
  • ДШИ 200 – градус шага 1,8, 4 фазы, крутящий момент 0,25 Нт;
  • ДШ-6 – градус шага – 18, 4 фазы, крутящий момент 2300 Нт.

Также среди покупателей спросом пользуются такие модели, как:

  • четырехфазный ДШР-40;
  • SM-200-0.22;
  • Purelogic R&D с энкодером;
  • NEMA 23;
  • STH-39D1112;
  • SP-57;
  • SanyoDenkiSM28.
Читайте также:  Автошколы в Великом Новгороде цены на обучение, адреса и телефоны

При подборе нужного двигателя, необходимо произвести расчет параметров мощности, напряжения и крутящего момента.

Одной из проблем работы шагового двигателя является управление приборов при отсутствии контроллера. Чтобы с этим справиться, следует взять специальный блок логической связи, помогающий управлять двигателем при отсутствии соответствующей микросхемы. Однако, лучше всего контролировать работу шаговых двигателей при помощи специального контроллера.

Средняя стоимость шагового привода в крупных городах России и Украины

Стоимость данного прибора зависит непосредственно от таких показателей, как:

  • тип двигателя;
  • мощность конструкции;
  • назначение.

Средняя стоимость однополярного шагового двигателя составляет:

  • Москва – 3000 у.е.;
  • Санкт-Петербург – 3500 у.е.;
  • Киев – 3500 у.е.;
  • Харьков – 4000 у.е.

Итак, мы рассказали, что такое шаговый двигатель, по какому принципу он работает, на какие категории подразделяется и какими свойствами отличается. Надеемся, что это облегчит ваш выбор при необходимости приобретения данного устройства.

Управляем шаговым двигателем с помощью Arduino и контроллера Easy Driver

Существует куча двигателей. И порой возникает вопрос, какой именно выбрать для вашего проекта на Arduino.

В этой статье мы детально обсудим один из типов двигателей — шаговый двигатель. Разберемся, в каких случаях уместно его использование. Рассмотрим пример подключения с использованием драйвера Easy Driver.

Необходимые элементы

  • Драйвер для шагового двигателя EasyDriver;
  • Небольшой шаговый двигатель;
  • Макетная плата;
  • Провода мама-мама;
  • Коннекторы;
  • Arduino Uno или подобный микроконтроллер;
  • Паяльник;
  • Источник питания на 12 В (или регулируемый источник питания)

Принцип работы шагового двигателя

Основное отличие шаговых двигателей от двигателей постоянного тока: они не только вращаются в различных направлениях, но обеспечивают точное угловое позиционирование ротора. Скорость вращения двигателя постоянного тока можно регулировать с помощью подачи большей или меньшей силы тока, но обеспечить остановку ротора в заданном положении невозможно. Теперь представьте себе принтер. Внутри, если вы его разберете, обнаружите огромное количество подвижных узлов, включая и двигатели. Один из установленных моторов обеспечивает подачу бумаги в то время как краска распыляется на бумагу. Этот двигатель должен обеспечивать подачу бумаги на определенное расстояние для построчной печати. Второй двигатель в принтере устанавливается для перемещения картриджа. Опять таки, необходимо обеспечить точно заданное позиционирование картриджа. В подобных случаях рационально использовать именно шаговые двигатели.

Шаговые двигатели обеспечивают вращение ротора на определенный угол (или шаг) при соответствующем сигнале управления. Это дает вам возможность получить полный контроль над положением узлов механизмов и выходить в заданную позицию. С конструктивной точки зрения это реализуется за счет подачи питания на разные катушки внутри двигателя. Правда, есть и свои недостатки — надо постоянно обеспечивать питание шагового двигателя при его выстое в заданной позиции. В данной статье в детали мы вдаваться не будем. Конструктивные особенности шаговых двигателей и их принцип действия раскрыты в статье двигатели и Arduino. Здесь ограничимся лишь тем фактом, что для управления шаговым двигателем, вы должны задать ему необходимое количество шагов в одном или противоположном направлениях и указать скорость шага.

На сегодняшний день существует огромное количество моделей шаговых двигателей и плат управления к ним (драйверов). Методики, которые раскрыты дальше, применимы к большинству шаговых двигателей и драйверов, которые не упоминаются здесь. При этом, прежде чем работать с незнакомым драйвером или шаговым двигателем, рекомендую ознакомится с их даташитами или отдельными гайдами по их использованию.

Ниже приведена информация о сборке драйвера, подключении и управлении шаговым двигателем с использованием Arduino.

Сборка драйвера

Самый простой метод использования драйвера EasyDriver — установить на нем коннекторы для последующей установки на макетной плате. Теоретически, можно закрепить коннекторы и на макетной плате.

Первый шаг — монтаж коннекторов на плату EasyDriver. В данном примере будут использованы не все выходы на драйвере, но все равно рекомендую распаять все отверстия. Как минимум, это обеспечит более надежную установку драйвера на макетной плате. Да и в дальнейшем все выходы могут пригодиться. Отломайте необходимое количество коннекторов и установите их на макетку. После этого сверху поставьте драйвер запаяйте все коннекторы.

Схема подключения

После распайки пришло время подключить драйвер к Arduino. Схема подключения несложная и приведена на рисунке ниже.

Примечание. Маленький шаговый двигатель выглядит не так, как он изображен на схеме подключения. У него должен быть коннектор с четырьмя разъемами на конце. Этот коннектор можно напрямую подключить к разъему с четырьмя коннекторами на драйвере (см. Рисунок после распайки выше). Только обратите внимание на даташит вашего двигателя. Бывает такое, что разводка кабелей не соответсвует пинам на драйвере.

Важно! Шаговые двигатели потребляют больше тока, чем может предоставить Arduino. В связи с этим мы будем питать Arduino от 12 В. При этом вход для питания (М+) на EasyDriver подключен к пину Vin на Arduino. Благодаря этому, можно запитывать Arduino и двигатель от одного источника.

Программа Arduino для вращения шагового двигателя

После подключения, можно заливать программу в Arduino. Ниже приведен исходник простенького скетча для первого запуска. В интернете куча готовых кусков кода, которые вы спокойно можете использовать в своих целях. Кроме того, в Arduino IDE есть полноценная встроенная библиотека Stepper library, которая значительно упрощает процесс вашего общения с шаговыми двигателями.

В данном примере рассматривается управление шаговым двигателем с использованием контроллера EasyDriver и Arduino. После прошивки платы и подключения, ротор будет вращаться в одном и противоположном направлении.

Ссылка на основную публикацию
Что такое система Старт-стоп, для чего предназначена и как работает
Что такое система Start Stop Система старт-стоп в автомобиле Были осуществлены специальные расчеты с исследованиями, при которых найдено, что двигатель...
Что такое Launch Control и как он работает
Старт с ланча что это Лонч (launch) – маркетинг-менеджмент запуска нового продукта. Лонч - выпуск на рынок нового продукта, сопровождающийся...
Что такое mAh (миллиампер-часы) на аккумуляторе
Что такое mAh (миллиампер-часы) на аккумуляторе Всем привет. Автономность работы ноутбука, мобильного телефона, источника бесперебойного питания -зависит от параметра аккумулятора,...
Что такое система; Платон; для грузовиков
Подключить прием платежей для сайта Система быстрых платежей. PSP Platon подходит для любых e-магазинов, онлайн-сервисов и мобильных приложений на Android...
Adblock detector