Тигельная печь ее виды и их особенности

Способ и технология для плавки металла в индукционной печи

Индукционная печь используется для плавки цветных и черных металлов. Агрегаты такого принципа действия применяют в следующих сферах: от тончайшего ювелирного дела до промышленной плавки металлов в крупных размерах. В данной статье будут рассмотрены особенности различных индукционных печей.

Индукционные печи для плавки металла

Принцип работы

Индукционный нагрев положен в основу действия печи. Другими словами, электрический ток образовывает электромагнитное поле и получается тепло, которое используется в промышленных масштабах. Этот закон физики изучается в последних классах общеобразовательной школы. Но понятие электрического агрегата и электромагнитных индукционных котлов нельзя путать. Хоть в основе работы и там и тут лежит электричество.

Как это происходит

Генератор подключается к источнику переменного тока, который поступает в него через индуктор, находящийся внутри. Конденсатор задействуется для создания контура колебания, в основе которого лежит постоянная рабочая частота, на которую настраивается система. При возрастании напряжения в генераторе до предела в 200 В индуктор создает магнитное поле переменного действия.

Замыкание цепи происходит, чаще всего, посредством сердечника из ферромагнитного сплава. Переменное магнитное поле начинает взаимодействие с материалом заготовки и создает мощный поток электронов. После вступления в индукционное действие электропроводящего элемента в системе происходит возникновение остаточного напряжения, которое в конденсаторе способствует возникновению вихревого тока. Энергия вихревого тока преобразовывается в тепловую энергию индуктора и происходит нагревание до высоких температур плавления искомого металла.

Тепло, производимое индуктором, применяют:

  • для расплавления мягких и твердых металлов;
  • для закаливания поверхности металлических деталей (например, инструмента);
  • для обработки в термическом режиме уже произведенных деталей;
  • бытовых потребностей (обогрев и кулинария).

Краткая характеристика различных печей

Разновидности приборов

  • Тигельные индукционные печи используют для расплавки металлов, главным их принципом, отличным от работы других агрегатов, является отсутствие сердечника.
  • Канальные агрегаты индукционного действия представляют собой своеобразный трансформатор, которая имеет стальной наконечник – магнитный привод. Нагрузка подается через вторичную обмотку, выполненную одним витком.
  • Индукционные приборы вакуумного действия, который процесс плавки выполняют в условиях полного вакуума, который буквально вытягивает из металла все примеси.
  • Плавильные тигельные печи – индукторы на массу плавки от 5 до 200 кг с преобразователем по принципу транзистора.

Индукционные тигельные печи

Является наиболее распространенным типом печного индукционного нагрева. Отличительной чертой, отличной от других видов является то, что в ней переменное магнитное поле появляется при отсутствии стандартного сердечника. Тигель в форме цилиндра размещается внутри индукторной полости. Печь, или тигель изготавливается из материала, который прекрасно сопротивляется огню и подключается к переменному электрическому току.

Положительные аспекты

  • энергия выделяется при загрузке металла, отсутствует необходимость в установке промежуточных элементов;
  • металлические сплавы, состоящие из нескольких составляющих, после завершения плавки получают однородную консистенцию и одинаковый химический состав в любом выбранном объеме;
  • при помощи регуляторов давления представляется возможным проводить восстановительный, окислительный или нейтральный процесс;
  • средние частоты переменного тока показывают высокие значения удельной мощности, что ставит тигельные печи в ряд высокопроизводительных агрегатов;
  • печь может работать с перерывами между загрузкой металла, на последующей плавке это не отразится, переход от одного вида металла к другому происходит без длительной перенастройки параметров;
  • тигельные агрегаты легко поставить на автоматическое управление, они простые в эксплуатации и легко перестраиваются на любой из режимов;
  • в результате процесса получаются качественные славы, состоящие из многих компонентов, температура имеет постоянное и одинаковое значение в пределах ванны, а остатки и отходы быстро расплавляются, отсутствуют перегревы.

Тигельные агрегаты относят к экологически чистым источникам тепла, окружающая среда не загрязняется от плавки металлов.

В работе тигельных печей присутствуют недостатки:

  • при технологической обработке используются шлаки пониженной температуры;
  • произведенная футеровка тигельных печей имеет низкую стойкость против разрушения, больше всего это заметно при резких скачках температур.

Имеющиеся недостатки не представляют особенных трудностей, достоинства тигельного индукционного агрегата для плавки металла очевидны и сделали такой тип приборов популярным и востребованным среди широкого круга потребителей.

Канальные печи индукционной плавки

Такой тип нашел широкое применение в плавильном деле цветных металлов. Эффективно используется для меди и медных сплавов на основе латуни, мельхиора, бронзы. Активно плавят в канальных агрегатах алюминий, цинк и сплавы в составе этих металлов. Широкое использование печей этого типа ограничено из-за невозможности выполнить футеровку, стойкую к разрушениям, на внутренних стенках камеры.

Расплавленный металл в канальных печах индукционного типа совершает тепловое и электродинамическое движение, что обеспечивает постоянную однородность смешивания компонентов сплава в печной ванне. Использование канальных печей индукционного принципа оправдано в случаях, если к расплавленному металлу и изготовленным слиткам предъявляются особые требования. Сплавы получаются качественными в плане коэффициента насыщения газами, присутствия в металле органических и синтетических примесей.

Индукционные канальные печи работают по типу миксера и предназначаются для выравнивания состава, поддержки постоянной температуры процесса, и выбора скорости разлива в кристаллизаторы или формы. Для каждого сплава и состава литья существуют параметры специальной шихты.

Достоинства

  • подогревание сплава происходит в нижней части, к которой нет воздушного доступа, что уменьшает испарение с верхней поверхности, нагретой до минимальной температуры;
  • канальные печи относят к экономичным индукционным печам, так как происходящее расплавление обеспечивается маленьким расходом электрической энергии;
  • печь имеет высокий коэффициент полезного действия благодаря применению в работе замкнутого контура магнитного провода;
  • постоянная циркуляция в печи расплавленного металла вызывает ускорение плавильного процесса и способствует однородности перемешивания компонентов сплава.
Читайте также:  Срезать угол; Блог Артема Краснова

Недостатки

  • стойкость каменной внутренней футеровки снижается при использовании высоких температур;
  • футеровка разрушается при плавлении химически агрессивных сплавов из бронзы, олова и свинца.
  • при плавлении загрязненной низкосортной шихты происходит засорение каналов;
  • поверхностный шлак на ванне не нагревается до высокой температуры, что не позволяет проводить операции в промежутке между металлом и укрытием и расплавлять стружку и скрап;
  • канальные агрегаты плохо переносят перерывы в работе, что заставляет постоянно хранить в жерле печи значительное количество жидкого сплава.

Полное удаление расплавленного металла из печи ведет к ее быстрому растрескиванию. По этой же причине невозможно выполнить быструю перестройку с одного сплава на другой, приходится делать несколько промежуточных плавок, получивших название балластных.

Вакуумные печи индукционного действия

Этот вид имеет широкое применение для плавления сталей высокого качества и никелевых, кобальтовых и железных сплавов жаростойкого качества. Агрегат успешно справляется с плавкой цветных металлов. В вакуумных агрегатах варят стекло, обрабатывают высокой температурой детали, производят монокристаллы.

Печь относят к высокочастотному генератору, расположенному в изолированном от внешней среды индукторе, пропускающем ток высокой частоты. Для создания вакуума из него насосами откачивают воздушные массы. Все операции по введению добавок, загрузке шихты, выдаче металла производится автоматическими механизмами с электрическим или гидравлическим управлением. Из вакуумных печей получают сплавы с небольшими примесями кислорода, водорода, азота, органики. Результат намного превосходит открытые печи индукционного действия.

Жаропрочную сталь из вакуумных печей применяют в инструментальном и оружейном производстве. Некоторые сплавы из никеля, с содержанием никеля и титана являются химически активными, и получить их в других видах печей проблематично. Вакуумные печи выполняют розлив металла поворотом тигеля во внутреннем пространстве кожуха или вращением камеры с неподвижно закрепленной печью. Некоторые модели имеют в дне открывающееся отверстие для слива металла в установленную емкость.

Тигельные печи с транзисторным преобразователем

Применяют для ограниченного веса цветных металлов. Они мобильные, имеют небольшой вес и с легкостью переставляются с места на место. В комплектацию печи входит высоковольтный транзисторный преобразователь универсального действия. Позволяет подобрать мощность, рекомендуемую для подключения в сети, а соответственно ей тип преобразователя, который необходим в этом случае с изменением параметров веса сплава.

Транзисторная индукционная печь широко применяется для металлургической обработки. С ее помощью нагревают детали в кузнечном деле, закаляют металлические предметы. Тигли в транзисторных печах выполняют из керамики или графита, первые предназначены плавить ферромагнитные металлы, такие как чугун или сталь. Графит устанавливается для плавления латуни, меди, серебра, бронзы и золота. На них плавят стекло и кремний. Алюминий хорошо плавится посредством чугунных или стальных тиглей.

Что такое футеровка печей индукционного действия

Ее предназначение состоит в защите печного кожуха от разрушающего действия высоких температур. Побочным действием является сохранение тепла, следовательно, повышается результативность процесса.

Тигель в конструкции индукционной печи выполняется одним из способов:

  • способом выемки в маленьких по объему печах;
  • набивным способом из огнеупорного материала в виде кладки;
  • комбинированным, сочетающим керамику и прокладку буферного слоя в промежутке кладки и индикатора.

Футеровка выполняется из кварцита, корунда, графита, шамотного графита, магнезита. Во все эти материалы домешивают добавки, улучшающих характеристики футеровки, уменьшающих изменения объема, улучшающих спекание, увеличивающие стойкость слоя к агрессивным материалам.

Для выбора того или иного материала для футеровки учитывают ряд сопутствующих условий, а именно, вид металла, цену и огнеупорные свойства тигля, срок службы состава. Правильно подобранный состав футеровки должен обеспечить технические требования для проведения процесса:

  • получение слитков высокого качества;
  • наибольшее количество полноценной плавки без проведения ремонтных работ;
  • безопасную работу специалистов;
  • стабильность и непрерывность проведения плавильного процесса;
  • получение качественного материала при использовании экономного количества ресурсов;
  • применение для футеровки распространенных материалов по невысокой цене;
  • минимальное влияние на окружающее пространство.

Применение индукционных печей позволяет получить сплавы и металлы отменного качества с минимальным содержанием различных примесей и кислорода, что повышает их применение в сложных областях производства.

Выплавка стали в открытых индукционных печах

Шихту необходимо составлять из чистых неокисленных материалов с минимальным содержанием серы и фосфора. При проведении плавки в основных тиглях на мелкую шихту, загружаемую на дно тигля, засыпа­ют

5% извести. Особенно рациональная схема загруз­ки в большие печи может быть обеспечена при исполь­зовании бадьи.

После включения печи первые 6—8 мин до момента прекращения толчков тока подводят пониженную мощ­ность. Затем подводимую мощность постепенно увели­чивают, и остальное время расплавления печь работает на максимальной мощности. По мере оседания шихты печь догружают.

При появлении видимых участков жидкого металла в тигель вводят шлаковую смесь, которая в случае плав­ки в кислой печи состоит из 10% молотого стекла, 65% шамота и 25% извести или из формовочной земли, из­вести и плавикового шпата, а при выплавке стали в ос­новном тигле смесь составляют из 60—65% извести, 15—50% магнезита и 20—25% плавикового шпата.

После расплавления основной массы шихты (80— 95%) отбирают пробу металла на химический анализ, а после полного расплавления подводимую мощность снижают до 30—40% от максимальной. После получения результатов анализа металла приступают к раскисле­нию и легированию. Окислительные процессы, как пра­вило, не проводят. Однако при необходимости, особен­но в основном тигле, можно окислять примеси присад­кой железной руды, окалины и продувкой кислородом.

В связи с сильным развитием конвективных пото­ков, вызываемых наведением индукционного тока, окис­ление примесей проходит интенсивно. Однако при при­садке большой порции окислителя металл может вспе­ниться и залить воротник печи. Поэтому окислители не­обходимо присаживать небольшими порциями.

В отдельных случаях при выплавке высококачест­венных сталей применяют диффузионное раскисление шлака смесью, состоящей из извести и молотого фер­росилиция, или порошкообразного алюминия. Приме­няют также боркальк, который готовят следующим об­разом. В гашеную известь добавляют порошкообраз­ный алюминий, смесь тщательно перемешивают и затем прокаливают при температуре ∼ 600° С.

Читайте также:  Пусковые устройства пользуемся бустерами правильно! – автомобильный журнал

Ферросплавы при выплавке стали в индукционных печах присаживают обычно в следующем порядке. Ос­новное количество ферровольфрама, феррохрома и ферромолибдена вводят в завалку. Для корректировки эти сплавы загружают в тигель не позднее, чем за 20 мин до выпуска, что обеспечивает их расплавление и равно­мерное распределение легирующего элемента по объему металла. Феррованадий, ферромарганец и ферросили­ций присаживают за 7—10 мин до выпуска. Причем феррованадий для уменьшения угара присаживают в последнюю очередь. Угар легирующих элементов зави­сит от состава стали и метода их введения. При описан­ной выше технологии легирования и раскисления метал­ла угар вольфрама составляет

2%, марганца, хрома и ванадия 5—10%, кремния 10—15%.

В связи с возможностью использования в шихте боль­шого количества отходов стали выплавляемой марки или близких по составу к ней, незначительным угаром леги­рующих элементов, небольшими потерями со шлаком и малой длительностью плавки индукционные печи явля­ются экономичными сталеплавильными агрегатами.

Скорость плавления шихты в индукционной печи за­висит от ее емкости и мощности установленного генера­тора. В 1-т печи, оборудованной генератором мощностью 600 кВт, скорость плавления шихты составляет 1 т/ч.

Расход электроэнергии при выплавке стали в промыш­ленных индукционных печах емкостью > 500 кг состав­ляет 500—700 кВт • ч/т.

Исследование и разработка технологии выплавки чугунов и сталей в индукционных сталеплавильных печах

Исследование и разработка технологии выплавки чугунов и сталей в индукционных сталеплавильных печах

На правах рукописи

ИССЛЕДОВАНИЕ И РАЗРАБОТКА ТЕХНОЛОГИИ ВЫПЛАВКИ ЧУГУНОВ И СТАЛЕЙ В ИНДУКЦИОННЫХ

СТАЛЕПЛАВИЛЬНЫХ ПЕЧАХ

Специальность 05.16.02 – Металлургия

черных, цветных и редких металлов

диссертации на соискание ученой степени

кандидата технических наук

Работа выполнена на кафедре «Металлургия» ГОУ ВПО

«Липецкий государственный технический университет»

Научный руководитель – доктор технических наук, профессор

Официальные оппоненты: доктор технических наук,

кандидат технических наук,

Ведущая организация – «Свободный сокол»

Защита состоится «11» мая 2010 г. в _1200_ часов на заседании диссертационного совета Д212.08.02 в Липецком государственном техническом университете 0, зал ученого совета.

С диссертацией можно ознакомиться в библиотеке Липецкого государственного технического университета.

Автореферат разослан « » 2010 г.

Общая характеристика работы

Актуальность темы. На сегодняшний день рынок металлопродукции предъявляет ряд жестких требований, как к служебным свойствам черных сплавов, так и к себестоимости их получения. Огромную долю рынка занимают детали механизмов и изделия из конструкционных чугунов и углеродистых качественных сталей.

В настоящее время на территории РФ и стран ближнего зарубежья происходит накопление легковесного стального и чугунного лома, который затруднительно перерабатывать на высококачественные сплавы с использованием классических металлургических схем. Выход из сложившейся ситуации возможен в создании ряда предприятий с неполным металлургическим циклом. Главными плавильными агрегатами «мини-заводов» могут быть индукционные сталеплавильные печи, которые способны работать полностью на твердой металлошихте.

Одной из главных проблем технологий выплавки высококачественных сплавов в индукционных печах являются конструктивные ограничения возможности проведения активных металлургических операций, что в ряде случаев усугубляется наследственным влиянием качества шихтовых материалов, которое до настоящего времени не регламентируется технологическими инструкциями.

Основным направлением развития современной металлургии является исследование и разработка технологий получения сплавов повышенного качества, за счет применения новых и совершенствования имеющихся методов выплавки, внепечной обработки и оценки качества шихтовых материалов.

Все вышесказанное предопределяет актуальность работы, которая направлена на разработку эффективных технологий индукционной выплавки сплавов и выполнена в рамках разрабатываемого в ЛГТУ научного направления «Феноменологические модели и нелинейная динамика высокотемпературных процессов и технологий» при частичной поддержке грантом РФФИ -р_центра_а. Работа удостоена областной премии имени за достижения в области технических наук.

Целью работы является разработка технологий выплавки конструкционных сплавов в индукционных сталеплавильных печах с проведением эффективных металлургических операций, посредством научно обоснованного определения влияния шихтовых материалов и технологических параметров на качество получаемых сплавов.

Для достижения цели в работе поставлены и решены следующие основные задачи:

— исследовать особенности выплавки сплавов в индукционных печах;

— разработать улучшенную методику анализа качества кусковых шихтовых материалов;

— исследовать влияние качества шихтовых материалов и температурных режимов выплавки на качество сплавов;

— исследовать поведение элементов при различных температурно-шлаковых режимах выплавки чугунов и углеродистой стали.

Достоверность основных положений и выводов. Достоверность результатов работы подтверждается проведением промышленных плавок, с использованием новейшего оборудования контроля состояния и свойств сплавов, программного обеспечения анализа данных и теоретическим анализом процессов с использованием современных теорий металлургических расплавов.

Научная новизна работы.

1. Экспериментально установлен факт «структурной наследственности» шихтовых материалов заключающийся в увеличении склонности углеродистых расплавов к дендритной сегрегации при использовании в шихте белых доменных чугунов. Увеличение температуры последнего периода миксирования свыше 15500С усиливает «наследственность» расплавов и одновременно повышает фрактальную размерность поверхности кристаллизующихся дендритов.

2. Предложен принцип организации технологии выплавки сплавов с использованием трех периодов миксирования, заключающийся в температурно-временном разграничении протекания основных окислительных реакций с участием кремния, углерода и марганца, позволяющий наводить жидкоподвижный шлак для кислых и нейтральных футеровок печей.

3. Исследованы особенности технологии выплавки сплавов в индукционных сталеплавильных печах, заключающиеся в поведении основных и «наследственных» элементов и специфических условиях шлакообразования с использованием твердых шлакообразующих смесей на основе системы оксидов «SiO2 Al2O3 CaO».

4. Разработана методика ускоренного исследования качества кусковых шихтовых материалов, позволяющая определять их полный химический состав и внутренние дефекты, влияющие на качество металлопродукции.

Практическая ценность работы.

1. Разработана и испытана в действующем производстве машиностроительный завод» () технология выплавки углеродистой стали на нейтральной футеровке с периодом окисления элементов, позволяющая получать качественный металл из стального лома с завышенным содержанием основных элементов.

2. Разработана и испытана в действующем производстве технология выплавки высококачественных конструкционных чугунов в индукционных печах с кислой футеровкой, позволяющая снизить газонасыщенность сплавов, уменьшить окисление основных элементов и повысить стойкость футеровки.

Читайте также:  18 Тома Жданова горячие интим фото в нижнем белье и купальнике неприличные и пикантные засветы без ц

3. Разработанная технология выплавки повышает качественные характеристики чугуна «нирезист» после модифицирования: увеличен предел прочности (на 15,6%), снижена твердость (на 8,8%) и уменьшено количество газоусадочных дефектов (на 15,85%).

4. С помощью разработанной методики исследовано предельное содержание вредных микроэлементов цветных металлов в доменных чушковых чугунах (от 0,025 до 0,034%) и стальном углеродистом ломе (от 0,016 до 0,023%).

Апробация работы. Основные положения диссертационной работы были представлены на 3-х научно-технических конференциях: ІII (г. Липецк, 2006), ІV (г. Липецк, 2007) и V (г. Липецк, 2008) международные научно-технические конференции «Современная металлургия начала нового тысячелетия», а также университетских совещаниях и семинарах в период с 2006 по 2008 г. (г. Липецк, ЛГТУ).

Публикации. По материалам опубликовано 16 печатных работ, в том числе 3 в изданиях, рекомендованных ВАК РФ.

Объем работы и структура. Диссертационная работа состоит из введения, 5 глав с выводами, библиографического списка из 125 наименований, заключения и 4 приложений. Включает 87 страниц текста, содержит 28 рисунков и 30 таблиц.

Основное содержание работы

Во введении приводятся основные аспекты актуальности выбранной темы исследования, определяется цель и вытекающие из нее основные задачи. Показана научная новизна и практическая ценность работы.

В первой главе дается краткий обзор области применения конструкционных чугунов и углеродистых сталей, способов их выплавки и модифицирования в условиях предприятий с неполным металлургическим циклом. Обозначены параметры качества сплавов, зависящие от правильности и полноты протекания металлургических процессов в условиях индукционной плавки при использовании различных шихтовых материалов. Приведена систематизация современных научных представлений о металлургической наследственности сплавов и её влияния на качество металлопродукции. В конце главы сформулированы цели и задачи исследования.

На предприятиях с неполным металлургическим циклом черные сплавы выплавляются в электропечах, при этом одним из наиболее перспективных плавильных агрегатов, ввиду легкости обслуживания, точности управления температурой, возможности работы в режиме миксирования, но и особо требовательным к качеству шихтовых материалов, является индукционная сталеплавильная печь. Важным технологическим приемом выплавки качественных сплавов в индукционных печах является использование режимов термовременной обработки (ТВО). Проведение эффективных металлургических операций, наряду с внепечным модифицированием расплавов, позволяет существенно улучшить качество сплавов в заготовках.

Показано, что имеются теоретические предпосылки для организации технологии выплавки стали с периодом окисления элементов и возможностью удаления части микроэлементов. В производстве для этих целей используется дорогостоящая основная футеровка, стойкость которой не превышает 5-10 плавок. Результаты современных исследований по использованию нейтральных футеровок для выплавки стали с окислением в периодических изданиях не представлены. Выплавка конструкционных чугунов осуществляется, как правило, на форсированных температурных режимах в печах с кислой футеровкой, с использованием твердых шлакообразующих смесей на основе Al2O3 и SiO2. Стойкость футеровок составляет не более 100 плавок. Понятие «качество сплавов» в современной металлургии определяется не только марочным химическим составом согласно действующей документации, но и концентрацией микроэлементов, растворенных газов и неметаллических включений, влияющих на процесс кристаллизации расплавов.

Согласно литературным данным, качество сплавов зависит не только от совершенства существующих металлургических технологий, но и от явления металлургической наследственности сплавов, которое также оказывает сильное воздействие на процессы кристаллизации, что наиболее характерно для расплавов индукционной плавки. Механизм и физическая сущность наследственности сплавов до сих пор окончательно не раскрыты.

Вторая глава представлена результатами анализа и теоретических исследований металлургической наследственности и физико-химических особенностей технологий выплавки сплавов в индукционных сталеплавильных печах с различной футеровкой.

При содержании углерода более 0,3% и температурах перегрева в пределах от 1550 до 18000С существует большая вероятность сохранения в расплаве г. ц.к. — подобной структуры ближнего порядка. Согласно квазиполикристаллической теории жидких металлов, элементами г. ц.к. — подобной структуры ближнего порядка расплавов являются устойчивые кластеры химических элементов.

Предложено для идентификации наследственных структур сплавов использовать фрактально-кластерную модель структур, согласно которой кластерные образования в сплавах обладают свойством масштабного самоподобия, а в ряде масштабов — иерархичностью строения. Основным свойством фрактального кластера является соответствие между размером, размерностью и числом частиц в агрегации, что характерно и для «наследуемых» типов структур в первично кристаллизованных сплавах.

Показано, что наследуемыми свойствами основных шихтовых материалов могут быть особенности строения макроструктуры (спелеобразный графит, дендриты и т. д.) и газонасыщенность доменных чушковых чугунов, а также общее и видовое содержание микроэлементов в шихтовых материалах.

Вскрыто, что главнейшей задачей режимов индукционной плавки является не только гомогенизация расплава по составу и температуре, активизация растворения и взаимодействия компонентов шлака и металла, но и «упорядочивание» его структуры в различных микрообластях ванны, что в основном ограничивается стойкостью используемых футеровок. В противном случае сохраняется высокая вероятность наследования свойств шихтовых материалов получаемыми сплавами. При этом в производственных условиях не всегда возможно организовать такую технологию выплавки, которая бы обеспечивала стабильное получение сплавов с заданными параметрами качества из любых шихтовых материалов. Поэтому первым этапом экспериментальной разработки технологии выплавки должно быть исследование качества наиболее часто используемых шихтовых материалов и выбор рационального состава шихты. Вторым важным этапом является определение влияния температурного режима плавок и типа доменных чугунов на качество выплавляемых сплавов. Вместе с этим исследование и организация эффективных температурно-шлаковых режимов позволит стабилизировать основные окислительно-восстановительные реакции процесса выплавки и рафинировать расплавы от газов и неметаллических включений.

Третья глава посвящена материалам, оборудованию, описанию проведения экспериментальных плавок и методикам исследования качества шихтовых материалов в лабораторных и производственных условиях.

Существующие методики оценки качества шихтовых материалов, используемые при входном контроле на действующих предприятиях, страдают главным недостатком: большая длительность анализа состава материалов, обусловленная использованием физико-химических методов анализа, при сравнительно небольшом диапазоне исследуемых элементов: C, Si, Mn, Cr, Ni, S и P. Разработана и апробированная методика ускоренного исследования качества материалов, основные стадии которой представлены в табл. 1.

Сравнение методик исследования качества шихтовых материалов

Ссылка на основную публикацию
Техобслуживание автомобиля
Техническое обслуживание автомобиля; что в него входит; Автоновости и советы автолюбителям Существует непреложная истина — нужно регулярно проводить техническое обслуживание...
Технические характеристики Mitsubishi Pajero 4 — расход топлива, конфигурация полного привода
Мини–тест Митсубиси Паджеро 4 и Тойота Прадо 150 Итак друзья, свершилось то, чего так долго ждали сторонники и противники. Трех-литровый...
Технические характеристики Renault Fluence — размеры кузова, клиренс, расход топлива
Недостатки Рено Флюенс 2013-2014 - отзывы владельцев (все минусы и плюсы Fluence 1 Обзор Отзывы Все минусы Renault Fluence ➖...
Техобслуживание Вольво; калькулятор, быстрый расчет стоимости ТО
Сброс сервисного интервала BMW – полное руководство О том, что такое Oil Service и Inspection мы уже писали и подробно...
Adblock detector