Типы современных авиационных двигателей

Как работает двигатель самолета тонкости и нюансы

Двигатель самолета – конструкция достаточно сложная, мощная, но при этом деликатная. От него, пожалуй, в первую очередь зависит правильная работа лайнера. Специалисты дают подробные объяснения, как работает двигатель самолета, чтобы огромная воздушная машина могла преодолевать большие расстояния и добираться без проблем из одной точки в другую.

История развития авиадвигателей

Первый самолет, который запустили братья Райт, имел двигатель с 4-мя цилиндрами. Конечно же, это значительно более простая конструкция, чем те, которые используются сейчас. И, как отмечают эксперты, без эволюции самолетного двигателя было бы невозможно развитие авиаотрасли вообще – примитивные первые моторы просто бы не потянули огромные и мощные машины, летающие сегодня.

Первый авиационный двигатель создал Джон Стрингфеллоу – он считается изобретателем специального двигателя на пару, предназначенный для неуправляемой модели. Но, как показала практика, паровые двигатели не подошли для авиации – они оказались чрезмерно тяжелыми.

C 1903 года началась, как назвали ее эксперты и аналитики, настоящая война моторов. Чарльз Тэйлор поставил на лайнер братьев Райт двигатель, так называемой рядной конструкции – в нем цилиндры находятся один за другим. Есть здесь аналогия с простым автомотором.

Однако практически сразу же был создан другой мотор – звездообразный с радиальным расположением цилиндров. Такие варианты широко применялись до самого появления реактивных двигателей.

Цилиндры в ряд не давали двигателю необходимой мощности, которая требовалась для самолетов. В 1906 году появился двигатель, где цилиндры разместились под прямым углом друг к другу. Также такой вариант мотора имел впрыск. Далее промышленность развивалась, прием достаточно активно. Вследствие этого авиаотрасль имеет современные и мощные моторы.

Как устроен двигатель

Сам по себе двигатель довольно сложен по конструкции. Учитывать тут надо огромное количество деталей и нюансов. Так, например, важно помнить, что при разгоне двигателя температура воздуха в нем повышается до 1000 градусов. При этом он не должен деформироваться, загораться и т.д.

Для изготовления авиационного двигателя берут только самые современные и безопасные материалы. Главное условие, предъявляемое к ним – они должны быть негорючими.

Авиационный двигатель включает в себя такие элементы, как:

  • Вентилятор
  • Компрессор
  • Камера сгорания
  • Сопло
  • Турбина

Перед турбиной стоит вентилятор, который позволяет затягивать воздух во время полета снаружи. У авиавентиляторов много лопастей, которые имеют определенную форму. И их размер, а также форма имеют крайне важное значение, т.к. именно за счет этого обеспечивается оптимальное заглатывание воздуха.

Вентилятор также решает и такую задачу, как прокачка воздушных масс в пространстве между элементами двигателя и его оболочкой. Это способствует охлаждению системы.

Здесь же находится и компрессор, обладающий высокой мощностью, – он способствует транспортировке воздуха в камеру сгорания. Все происходит под давлением достаточно высокого уровня. Именно в камере начинается смешение воздушных масс и топлива. Такая смесь поджигается, начинается нагрев как самой смеси, так и всех элементов, которые находятся рядом. Чаще всего камеру делают из керамических составляющих – обусловлено такое состояние тем, что температура здесь доходить до 2 тысяч гр., а керамическая чаша устойчива к таким нагревам.

Смесь после прохождения всех этих этапов попадает в турбину. Она по своему внешнему виду напоминает довольно большое число лопаток. Они влияют на давление проходящего смесевого потока, вследствие чего и начинает приходить в свое движение турбина двигателя. После этого она начинает вращать вал, где стоит еще один необходимый элемент — вентилятор.

Двигатель по сути своей представляет систему достаточно замкнутую – для нее требуется только, чтобы подавался воздух и было топливо в наличии.

Движение смеси продолжается, и она переходит в сопло. И на этом заканчивается первый этап рабочего состояния двигателя. Начинает создаваться струя, которую называют реактивной. Вентилятор начинает гонять воздух, который еще холодный, через сопло, за счет чего он не разрушается от слишком высокой температуры смеси.

Сегодня, как отмечают эксперты, самыми лучшими считаются подвижные сопла – они могут расширяться и сжиматься. Кроме того, такие варианты могут регулировать угол, что помогает дать правильное направление воздуху. Самолет за счет этого приобретает наибольшую маневренность.

Какие варианты двигателей есть

Эксперты уверяют, что сегодня есть несколько вариантов двигателей:

  1. Классика
  2. Турбовинтовые
  3. Турбовентиляторные
  4. Прямоточные

Первые варианты функционируют по стандартному варианту. Такие варианты хорошо подходят для воздушных судов самых разных модификаций. Варианты с турбовинтовым устройством будут работать по несколько иным принципам. В таких конструкциях газовая турбина не связана с трансмиссией. Подобные варианты конструкций двигают лайнер лишь частично с использованием реактивной тяги. Для создания основной части энергии используется редуктор. Винтовые установки более экономичные, но при этом они не дают самолету развить необходимую скорость. Поэтому их зачастую ставят только на малоскоростных лайнерах.

Турбовентиляторные варианты – комбинированные варианты, в которых есть детали и нюансы от турбовинтовых и турбовентиляторных. У них большие лопасти вентилятора. Скорость вращения может снижаться за счет применения обтекателя, где и стоит вентилятор. Подобные варианты считаются экономичными, т.к. меньше расходуют топливо. КПД же у них существенно выше, чем у других. Поэтому подобные варианты двигателей зачастую устанавливают на крупных самолетах.

Прямоточные варианты не работают с подвижными элементами. Втягивание воздуха в такие происходит естественно за счет применения обтекателя, который стоит на входе.

Поршневой авиационный двигатель (мотор) внутреннего сгорания: устройство и принцип работы

Первый самолёт появился именно благодаря созданию двигателя. Таким двигателем, позволившим впервые в истории человечества осуществить реальный пилотируемый полёт, был поршневой двигатель внутреннего сгорания (привычное сокращение: ДВС). В 1903 году был выполнен первый в мире управляемый полёт самолёта «Флайер» братьев Орвилла и Уилбура Райт. А мотор для этого самолёта построил конструктор Чарльз Тейлор — первый в мире авиамеханик.

Читайте также:  Автосалон Рольф Химки отзывы клиентов

История создания и принцип работы поршневого мотора

Изобретатели предприняли множество безуспешных попыток создать двигатель, в котором топливо сжигалось бы не вне рабочего объема машины (цилиндров), как у паровых машин, а внутри его. Это должно было резко повысить КПД тепловой машины.

Но только в 1860 году французскому инженеру бельгийского происхождения Этьену Ленуару1 удалось создать работоспособный двухтактный двигатель внутреннего сгорания с водяным охлаждением, работающий на светильном газе, который применялся в промышленности.

Двигатель Этьена Ленуара

Заметное улучшение характеристик ДВС произошло во второй половине 1870-х, когда немецкий предприниматель, изобретатель-самоучка Николаус Отто создал свой поршневой двигатель. Новинкой стало то, что рабочая смесь перед зажиганием сжималась, а её воспламенение производилось в крайнем верхнем положении поршня.

Изготовленный таким образом двигатель назвали четырехтактным, т. к. процесс в нём совершался в течение четырех ходов поршня:

  • I такт: впуск — поршень движется в цилиндре вниз, втягивая воздух и топливо через открытый впускной клапан.
  • II такт: сжатие — впускной и выпускной клапаны закрыты, поршень движется в цилиндре вверх, сжимая топливовоздушную смесь.
  • III такт: рабочий ход (расширение) — когда поршень в такте сжатия приближается к верхней мертвой точке, система зажигания дает искру на свечах. При этом топливовоздушная смесь поджигается и в процессе сгорания быстро расширяется. Создаваемое расширением давление толкает поршень вниз, а поршень, двигаясь к нижней мертвой точке, вращает коленчатый вал, передающий усилие на воздушный винт.
  • IV такт: выпуск — когда поршень достигает нижней мертвой точки, открывается выпускной клапан. Затем поршень снова идет вверх, выталкивая продукты сгорания топливовоздушной смеси из цилиндра.

Схема четырёхтактного двигателя

Одинаковые такты проходят в цилиндрах не одновременно, а последовательно, чтобы в каждый момент времени как минимум один поршень совершал рабочий ход.

Николаус Отто создал в Кёльне завод газовых двигателей Deutz-AG (1872), техническим директором которого стал Готтлиб Даймлер, а главным конструктором — Вильгельм Майбах.

Инженер Карл Бенц, независимо от Отто, Даймлера и Майбаха, создал первый в мире двухтактный бензиновый двигатель — первая модель двигателя была изготовлена в 1878 года, а в 1879 году получен патент.

В 1890 году Даймлер организовал компанию Daimler Motoren Gesellschaft (DMG) по производству небольших мощных двигателей для использования на земле, в воздухе и на воде. Вот почему мы видим на современном логотипе компании Mercedes-Benz трёхлучевую звезду.

Конструкторы Даймлер и Майбах предположили, что топливом для их двигателя должен быть продукт перегонки нефти. В 19 веке таких продуктов было три: масло, керосин и бензин. В качестве топлива был избран наиболее легко воспламеняющийся бензин, который в основном применялся для чистки одежды и продавался в аптеках.

Даймлер и Майбах сконструировали свой первый двигатель в конце 1885 года. В нём было применено особое устройство — карбюратор, в котором бензин испарялся, пары смешивались с воздухом и поступали в цилиндр двигателя.

Первые немецкие конструкторы поршневых двигателей

В Российской империи тоже были свои изобретатели и конструкторы: лейтенант флота Евгений Александрович Яковлев основал в Санкт-Петербурге «Первый русский завод керосиновых и газовых двигателей Е. А. Яковлева».

В 1889 году был изготовлен первый двигатель внутреннего сгорания конструкции Яковлева, работающий на жидком топливе. Все моторы он конструировал сам. В 1893 году двигатели Яковлева были удостоены премии на выставке в Чикаго. Выставочный комитет наградил завод и его владельца бронзовой медалью и почетным дипломом выставки.

Двигатели Е. А. Яковлева поставлялись не только на внутренний рынок, но и за границу. На своем заводе Евгений Александрович старался использовать только отечественное сырье и материалы, хотя не всегда это получалось. Так, из-за того, что российские аналоги не подходили по технологии, уголь и кокс пришлось покупать в Англии.

Наименованием завода «Первый русский» Яковлев хотел показать, что Россия может производить двигатели не хуже, чем в Европе.

Первый в России авиационный многоцилиндровый бензиновый двигатель с водяным охлаждением построил капитан русского флота Огнеслав Степанович Костович.

В оппозитном 80-сильном двигателе конструкции Костовича с горизонтальным размещением цилиндров впервые использовалось электрическое зажигание. К 1883 году двигатель был построен, его испытания и доводка продолжались до 1885 года.

Двигатель Огнеслава Костовича

В начале XX века отдельные российские фирмы брались за разработку и изготовление авиадвигателей собственной конструкции (заводы Лесснера в Петербурге, завод «Мотор» и АО «Русско-Балтийский вагонный завод» в Риге). Известны проекты многих российских инженеров-изобретателей (Ф. Р. Гешвенда, С. С. Неждановского, Б. Г. Луцкого, П. Д. Кузьминского, В. В. Киреева, С. В. Гризодубова, А. Г. Уфимцева, А. В. Нестерова, А. А. Пороховщикова и других, однако дальше изготовления опытных образцов они не были реализованы. Эти опытные конструкции отечественных двигателистов мы постараемся рассмотреть в следующих материалах.

Оригинальные авиадвигатели русских конструкторов (слева-направо): верхний ряд — моторы А.Г. Луцкого, С.В. Гризодубова, нижний ряд — биротативный мотор А.Г. Уфимцева, двигатель А.В. Нестерова.

В этот период авиадвигателестроение в России было сосредоточено на следующих заводах:

  • «Мотор» в Риге (в 1909, а с 1915 в Москве);
  • «Гном-Рон» в Москве (с 1912);
  • «Сальмсон» в Москве (с 1915);
  • «Русский Рено» в Петрограде (с 1914 г., этот завод до 1917 года производил автомобильные моторы);
  • Авиационное отделение «Русско-Балтийского Вагонного завода» в Петрограде (с 1915);
  • АО Ильина в Москве (1916),
  • «Дюфлон и Константинович» (ДЕКА – с 1916 г.) в Александровске2.

На всех русских моторных заводах выпускались двигатели зарубежных конструкций: «Райт», «Гном», «Рон», «Рено» и др. Только Теодор Калеп смог на заводе «Мотор» выпустить несколько моторов собственной конструкции, имевших характеристики лучше зарубежных, однако их производство пришлось сократить из-за ориентации правительства на зарубежные образцы.

Как отмечалось выше, в 1903 году был выполнен первый в мире полёт самолёта «Флайер» братьев Райт, с двигателем конструктора Чарльза Тейлора.

Авиадвигатель для первого самолета «Фрайер» братьев Райт — принцип работы.

Это был ДВС с водяным охлаждением, однорядный четырехцилиндровый с алюминиевым блоком цилиндров. Диаметр и ход поршня — четыре дюйма. Коленчатый вал — алюминиевый, шатуны были изготовлены из труб.

Таким образом, во второй половине XIX века, благодаря изобретениям Отто и Даймлера, было положено начало широкому применению ДВС в летательных аппаратах тяжелее воздуха.

Читайте также:  Самодельная Виброрейка Для Бетона

Конструкция поршневого ДВС

Основные элементы ДВС

Поршневой двигатель внутреннего сгорания состоит из следующих основных элементов:

  • поршень — возвратно-поступательным движением обеспечивает впуск смеси, ее сжатие, получение энергии и дальнейший вывод отработанных газов;
  • поршневые кольца выполняют функцию уплотнителей;
  • шатун и коленчатый вал осуществляют преобразование возвратно-поступательного импульса в крутящий момент;
  • поршневой палец обеспечивает шарнирное соединение поршня и шатуна;
  • впускной и выпускной клапаны открывают цилиндр для входа смеси (впускной] и выхода отработанных газов (выпускной), герметизируют цилиндр во время сжатия и воспламенения;
  • топливная форсунка обеспечивает распыл топлива;
  • свеча зажигания создает искру, которая поджигает топливовоздушную смесь;
  • блок цилиндров — силовой корпус, объединяющий цилиндры и обеспечивающий их охлаждение.

Сгорание топлива в поршневом двигателе осуществляется в цилиндрах, где поджигается смесь топлива и воздуха, под действием давления получившихся газов происходит поступательное движение поршня. Образовавшаяся при этом тепловая энергия превращается в механическую. Это движение поршня, в свою очередь, преобразуется во вращательное движение коленчатого вала двигателя через шатун, являющийся связующим звеном между цилиндром с поршнем и коленчатым валом.

Коэффициент полезного действия современных поршневых двигателей не превышает 25-30%, то есть большая часть энергии, получаемой при сгорании топлива, превращается в тепло, которое необходимо отводить из двигателя. Эту функцию выполняет система охлаждения.

Схемы двигателей со временем усложнялись, появились моторы 4-, 6-, 8-цилиндровые; рядные и V-образные; с жидкостным охлаждением3 или воздушным4.

Мощность зависела в основном от объёма цилиндров. Но с увеличением объёма цилиндров (или их количества) росла масса двигателя.

Классификация поршневых авиадвигателей

Авиационные поршневые двигатели могут быть классифицированы по различным признакам.

В зависимости от рода применяемого топлива — на двигатели легкого или тяжелого топлива.

По способу смесеобразования — на двигатели с внешним смесеобразованием (карбюраторные) и с внутренним смесеобразованием (непосредственный впрыск топлива в цилиндры).

В зависимости от способа воспламенения смеси — на двигатели с принудительным зажиганием и двигатели с воспламенением от сжатия.

В зависимости от числа тактов — на двухтактные и четырехтактные.

В зависимости от способа охлаждения — на двигатели жидкостного и воздушного охлаждения.

По числу цилиндров — на четырехцилиндровые, пятицилиндровые, двенадцатицилиндровые и т. д.

В зависимости от расположения цилиндров — на рядные (с расположением цилиндров в ряд) и звездообразные (с расположением цилиндров по окружности).

Рядные двигатели, в свою очередь, подразделяются на однорядные, двухрядные V-образные, трехрядные W-образные, четырехрядные Н-образные или Х-образные. Звездообразные двигатели также бывают однорядные, двухрядные и многорядные.

По характеру изменения мощности в зависимости от изменения высоты двигатели подразделяются на высотные, то есть сохраняющие мощность с подъемом самолета на высоту, и невысотные, мощность которых падает с увеличением высоты полета.

По способу привода воздушного винта — на двигатели с прямой передачей на винт и редукторные двигатели.

Поршневые двигатели работают по циклу периодического действия.

Поршневые двигатели воздушного охлаждения имеют преимущества перед двигателями жидкостного охлаждения: меньшая масса, соответственно, большая удельная мощность и более простая, а значит, и более надежная конструкция, высокая эффективность охлаждения. Для лучшего обдува цилиндров воздухом их располагают в виде звезды. Каждый цилиндр отделен от остальных и доступен для ремонта и обслуживания.

В 1909 году Луисом и Лораном Сеген был создан ротативный двигатель «Гном», получивший широкое распространение и применение самолётах времён Первой мировой войны.

В этом звездообразном двигателе вокруг неподвижного коленчатого вала вращался блок цилиндров.

Преимущества ротативных авиадвигателей: в таких двигателях нет необходимости в установке противовесов. Цилиндры постоянно находятся в движении, что создает хорошее воздушное охлаждение. Можно отказаться от применения маховика, т. к. вращающиеся цилиндры и поршни создают вращающийся момент.

Недостатки: отнести плохое маневрирование самолёта, обусловленное гироскопическим эффектом, создаваемым большой вращающейся массой двигателя, а также плохую систему смазки, поскольку инерционные силы заставляют смазочное масло скапливаться на периферии двигателя. Масло приходилось смешивать с топливом для обеспечения надлежащего смазочного эффекта.

Такая конструкция была проще, но самолеты возвращались из полета покрытые толстым слоем касторового масла, которое во время работы такого двигателя разлеталось от вращающегося блока, щедро разбрасывая капли даже на лётчиков. К тому же на вращающиеся цилиндры действовали большие инерционные нагрузки.

Более поздние двигатели содержали привычный неподвижный блок цилиндров и вращающийся коленчатый вал. Но радиальное расположение имело и свои недостатки: высокое лобовое сопротивление и сложность обслуживания двигателя.

Основные типы поршневых двигателей

В истории авиации мотор никогда не был так популярен, как самолёт: широко известны, например, самолёты Первой мировой войны «Фоккер D-7», «СПАД 13», «Бристоль F.2B», но редко слышно о 185-сильном двигателе БМВ, 235-сильном «Испано-Сюиза», 275-сильном «Фалькон» («Роллс-Ройс»). Хотя без надёжного двигателя удачный самолёт не построишь — всё начиналось с мотора.

В 1918 году французский изобретатель Ратье предложил турбонагнетатель.

Конструктивные особенности поршневых двигателей

Авиационные поршневые двигатели имеют большое число цилиндров (от 5 до 24), хорошие экономические характеристики, способны работать в перевёрнутом состоянии и обладают большей надёжностью.

Способ охлаждения – воздушное, или жидкостное — определяет конструкцию двигателя.

В двигателях с жидкостным охлаждением цилиндры объединяют по 4-6 штук в блоки (ряды), они имеют общую рубашку, внутри которой циркулирует охлаждающая жидкость. В одном двигателе может быть несколько (2, 4 или 6) блоков, размещаемых вдоль оси двигателя.

В двигателях с воздушным охлаждением цилиндры располагают в плоскости, перпендикулярной оси двигателя, по 5-9 штук; вместе эти цилиндры напоминают звезду. У мощных двигателей могло быть до четырех звёзд (до 20-24 цилиндров). Цилиндры охлаждаются потоком встречного воздуха, для более эффективного охлаждения наружная поверхность корпусов цилиндров делается ребристой.

Помимо звездообразных двигателей, нашли свое применение в авиастроении и оппозитные двигатели5. Их часто устанавливают на легкие и небольшие самолеты, так как их мощности вполне достаточно для полета на высоких скоростях.

Оппозитный поршневой двигатель П-020

К 1942 году поршневые моторы практически исчерпали свои возможности. Пропеллеры по своей конструкции так же достигли высшей точки эффективности.6 Увеличение числа цилиндров, применение нагнетателей, сложных систем впрыска воды, спирта или химикатов в топливо усложняло конструкцию и давало лишь небольшой эффект.

Читайте также:  Пять причин любить и ненавидеть Москвич-412 - – автомобильный журнал

Одним из наиболее удивительных поршневых авиадвигателей, изготовленных во время Второй мировой войны, был американской опытный звездообразный двигатель жидкостного охлаждения «Райт R-2160 Торнадо», в котором 42 цилиндра располагались в семь рядов в шести радиальных блоках. По замыслу конструкторов, «Торнадо», имевший небольшой диаметр, позволял авиаконструкторам разрабатывать фюзеляжи с небольшим поперечным сечением.

Однако «Торнадо» требовалась довольно тяжелая и сложная система радиаторов охлаждающей жидкости, которая сводила на нет любое аэродинамическое преимущество от малого поперечного сечения двигателя.

Источники:

Котельников В. Р., Хробыстова О. В., Зрелов В. А., Пономарёв В. А. Двигатели боевых самолетов России /Под общ. ред. В. В. Горошникова. — Рыбинск : Медиарост, 2017. -616 с.: илл.

Как работает реактивный двигатель самолета

Путешествуя на самолетах, вы задумывались когда-нибудь о том, как работает двигатель реактивного самолета? О реактивной тяге, которая приводит его в действие, знали еще в Античные времена. Применить же ее на практике смогли только в начале прошлого века, в результате гонки вооружений между Англией и Германией.

Принцип работы двигателя реактивного самолета довольно прост, но имеет некоторые нюансы, которые строго соблюдаются при их производстве. Чтобы самолет смог надежно держаться в воздухе, они должны работать идеально. Ведь от этого зависят жизни и безопасность всех, кто находится на борту самолета.

Как работает реактивный двигатель?

Его приводит в действие реактивная тяга. Для этого нужна какая-то жидкость, выталкиваемая из задней части системы и придающая ей движение вперед. Здесь работает третий закон Ньютона, который гласит: “Любое действие вызывает равное противодействие”.

У реактивного двигателя вместо жидкости применяется воздух. Он создает силу, обеспечивающую движение.

В нем используются горячие газы и смесь воздуха со сгораемым топливом. Эта смесь выходит из него с высокой скоростью и толкает самолет вперед, давая ему лететь.

Если говорить об устройстве двигателя реактивного самолета, то оно представляет из себя соединение четырех самых важных деталей:

  • компрессора;
  • камеры горения;
  • турбины;
  • выхлопа.

Компрессор состоит из нескольких турбин, которые засасывают воздух и сжимают его по мере прохождения через расположенные под углом лопасти. При сжатии температура и давление воздуха повышаются. Часть сжатого воздуха попадает в камеру горения, где смешивается с топливом и поджигается. Это увеличивает тепловую энергию воздуха.

Горячая смесь на высокой скорости выходит из камеры и расширяется. Там она проходит через еще одну турбину с лопастями, которые вращаются, благодаря энергии газа.

Турбина соединена с компрессором в передней части двигателя, и таким образом приводит его в движение. Горячий воздух выходит через выхлоп. К этому моменту температура смеси очень высока. И еще увеличивается, благодаря эффекту Дросселирования. После этого воздух выходит из него.

Разработка самолетов с реактивным двигателем началась в 30х годах прошлого века. Англичане и немцы начали разрабатывать подобные модели. В этой гонке победили немецкие ученые. Поэтому первым самолетом с реактивным двигателем стала “Ласточка” в Люфтваффе. “Глостерский метеор” поднялся в воздух немного позднее. О первых самолетах с такими двигателями подробно рассказано в этой статье.

Двигатель сверхзвукового самолета — тоже реактивный, но уже в совершенно другой модификации.

Как работает турбореактивный двигатель?

Реактивные двигатели применяются повсеместно, а турбореактивные устанавливаются больших пассажирских лайнерах. Отличие их в том, что первый несет с собой запас топлива и окислителя, а конструкция обеспечивает их подачу из баков.

Турбореактивный двигатель самолета несет с собой лишь топливо, а окислитель — воздух — нагнетается турбиной из атмосферы. В остальном принцип его работы совпадает с тем же, что и у реактивного.

Одна из самых важных деталей у них — это лопасть турбины. От нее зависит мощность двигателя.

Схема турбореактивного двигателя.

Именно они вырабатывают тяговые усилия, необходимые для ускорения самолета. Каждый из лопастей производит в 10 раз больше энергии, чем самый обычный, автомобильный двигатель. Они устанавливаются позади камеры сгорания, в той части двигателя, где самое высокое давление, а температура доходит до 1400 градусов по Цельсию.

В процессе производства лопастей они проходят через процесс монокристаллизации, что придает им твердости и прочности.

Перед тем, как установить на самолет, каждый двигатель проверяется на полное тяговое усилие. Он должен пройти сертификацию Европейского совета по безопасности и компанией, которая его произвела. Одной из самых крупных фирм по их производству является Роллс-Ройс.

Что такое самолет с атомным двигателем?

Во время Холодной войны были предприняты попытки создания реактивного двигателя не на химической реакции, а на тепле, который бы вырабатывал ядерный реактор. Его ставили вместо камеры сгорания.

Воздух проходит через активную зону реактора, понижая его температуру и повышая свою. Он расширяется и истекает из сопла со скоростью, большей чем скорость полета.

Комбинированный турбреактивно-атомный двигатель.

В СССР проводились его испытания на базе ТУ-95. В США тоже не отставали от ученых в Советском Союзе.

В 60х годах исследования в обеих сторонах постепенно прекратились. Основными тремя проблемами, которые помешали разработке, стали:

  • безопасность летчиков во время полета;
  • выброс радиоактивных частиц в атмосферу;
  • в случае падения самолета, радиоактивный реактор может взорваться, нанеся непоправимый вред всему живому.

Как производят реактивные двигатели для моделей самолетов?

Их производство для моделей самолетов занимает около 6 часов. Сначала вытачивается базовая пластина из алюминия, к которой крепятся все остальные детали. По размеру она совпадает с хоккейной шайбой.

К ней прикрепляют цилиндр, поэтому получается что-то вроде консервной банки. Это будущий двигатель внутреннего сгорания. Далее устанавливается система подачи топлива. Чтобы его закрепить, в основную пластину вкручиваются шурупы, предварительно опущенные в специальный герметик.

Двигатель для модели самолета.

Каналы стартера крепятся с другой стороны камеры, чтобы перенаправлять выбросы газа в турбинное колесо. В отверстие сбоку от камеры сгорания устанавливается спираль накаливания. Она поджигает топливо внутри двигателя.

Потом ставят турбину и центральную ось цилиндра. На нее ставят колесо компрессора, которое нагнетает воздух в камеру сгорания. Его проверяют с помощью компьютера, прежде чем закрепить пусковую установку.

Готовый двигатель еще раз проверяют на мощность. Его звук немногим отличается от звука двигателя самолета. Он, конечно, меньшей силы, но полностью напоминает его, придавая больше схожести модели.

Ссылка на основную публикацию
Техобслуживание автомобиля
Техническое обслуживание автомобиля; что в него входит; Автоновости и советы автолюбителям Существует непреложная истина — нужно регулярно проводить техническое обслуживание...
Технические характеристики Mitsubishi Pajero 4 — расход топлива, конфигурация полного привода
Мини–тест Митсубиси Паджеро 4 и Тойота Прадо 150 Итак друзья, свершилось то, чего так долго ждали сторонники и противники. Трех-литровый...
Технические характеристики Renault Fluence — размеры кузова, клиренс, расход топлива
Недостатки Рено Флюенс 2013-2014 - отзывы владельцев (все минусы и плюсы Fluence 1 Обзор Отзывы Все минусы Renault Fluence ➖...
Техобслуживание Вольво; калькулятор, быстрый расчет стоимости ТО
Сброс сервисного интервала BMW – полное руководство О том, что такое Oil Service и Inspection мы уже писали и подробно...
Adblock detector